
Advanced informed search  

Tuomas Sandholm
Computer Science Department

Carnegie Mellon University

Read: Optimal Winner Determination Algorithms.
Sandholm, T. 2006.
Chapter 14 of the book Combinatorial Auctions,
Cramton, Shoham, and Steinberg, editors, MIT Press.

Example application:  
Winner determination in multi-item auctions

•  Auctioning multiple distinguishable items when bidders have preferences over
combinations of items: complementarity & substitutability

•  Example applications
–  Allocation of transportation tasks
–  Allocation of bandwidth

•  Dynamically in computer networks
•  Statically e.g. by FCC

–  Sourcing
–  Electricity markets
–  Securities markets
–  Liquidation
–  Reinsurance markets
–  Retail ecommerce: collectibles, flights-hotels-event tickets
–  Resource & task allocation in operating systems & mobile agent platforms

Auction design for multi-item settings

•  Sequential auctions
–  How should rational agents bid (in equilibrium)?

•  Full vs. partial vs. no lookahead
•  Would need normative deliberation control methods

–  Inefficiencies can result from future uncertainties
•  Parallel auctions

–  Inefficiencies can still result from future uncertainties
–  Postponing & minimum participation requirements

•  Unclear what equilibrium strategies would be
•  Methods to tackle the inefficiencies

–  Backtracking via reauctioning (e.g. FCC [McAfee&McMillan96])
–  Backtracking via leveled commitment contracts

[Sandholm&Lesser95,AAAI-96, GEB-01] [Sandholm96]
[Andersson&Sandholm98a,b]

•  Breach before allocation
•  Breach after allocation

•  Combinatorial auctions [Rassenti,Smith&Bulfin82]...
–  Bids can be submitted on combinations (bundles) of items
–  Bidderʼs perspective

•  Avoids the need for lookahead
•  (Potentially 2#items valuation calculations)

–  Auctioneerʼs perspective:
•  Automated optimal bundling of items
•  Winner determination problem:

–  Label bids as winning or losing so as to maximize
sum of bid prices (= revenue ≈ social welfare)

– Each item can be allocated to at most one bid
•  Exhaustive enumeration is 2#bids

Auction design for multi-item
settings…

Space of allocations

#partitions is ω(#items#items/2), O(#items#items)
[Sandholm et al. AAAI-98, AIJ-99, Sandholm AIJ-02]
Another issue: auctioneer could keep items

{1}{2}{3}{4}

 {1},{2},{3,4} {3},{4},{1,2} {1},{3},{2,4} {2},{4},{1,3} {1},{4},{2,3} {2},{3},{1,4}

 {1},{2,3,4} {1,2},{3,4} {2},{1,3,4} {1,3},{2,4} {3},{1,2,4} {1,4},{2,3} {4},{1,2,3}

 {1,2,3,4}

Level
(4)

(3)

(2)

(1)

Dynamic programming for winner
determination

•  Uses Ω(2#items), O(3#items) operations independent of #bids
–  (Can trivially exclude items that are not in any bid)
–  Does not scale beyond 20-30 items

1

2

3

1,2

1,3

2,3

1,2,3

[Rothkopf et al. Mgmt Sci 98]

NP-completeness

•  NP-complete [Rothkopf et al Mgmt Sci 98]
–  Weighted set packing [Karp 72]

Polynomial time approximation
algorithms with worst case guarantees

General case
•  Cannot be approximated to k = #bids1- ε (unless

probabilistic polytime = NP)
– Proven in [Sandholm IJCAI-99, AIJ-02]
– Reduction from MAXCLIQUE, which is

inapproximable [Håstad96]
•  Best known approximation gives
 k ∈ O(#bids / (log #bids)2) [Haldorsson98]

 value of optimal allocation
k =
 value of best allocation found

Polynomial time approximation
algorithms with worst case guarantees

Special cases
•  Let κ be the max #items in a bid: k= 2κ / 3 [Haldorsson SODA-98]
•  Bid can overlap with at most Δ other bids:

k= min((Δ+1) / 3 , (Δ+2) / 3, Δ / 2) [Haldorsson&Lau97;Hochbaum83]
•  k= sqrt(#items) [Haldorsson99]
•  k= chromatic number / 2 [Hochbaum83]

–  k=[1 + maxH∈G minv∈H degree(v)] / 2 [Hochbaum83]
–  Planar: k=2 [Hochbaum83]

•  So far from optimum that irrelevant for auctions
•  Probabilistic algorithms?
•  New special cases, e.g. based on prices [Lehmann et al. 01, …]

Restricting the allowable combinations
that can be bid on to get polytime

winner determination [Rothkopf et al. Mgmt Sci 98]

1
2

3
4

5

6

1 2 3 4 5 6 7

|set| ≤ 2
or |set| > #items / c

O(#items2)
or
O(#items3)

O(nlargec-1 #items3)
NP-complete already
if 3 items per bid are
allowed

Gives rise to the same economic inefficiencies
that prevail in noncombinatorial auctions

Item graphs [Conitzer, Derryberry, Sandholm AAAI-04]

•  Item graph = graph with the items as vertices where
every bid is on a connected set of items

•  Example:

Ticket to
Alcatraz,

San
Francisco

Ticket to
Children’s

Museum, San
Jose

Caltrain ticket

Rental car

Bus ticket

•  Does not make sense to bid on items in SF and SJ
without transportation

•  Does not make sense to bid on two forms of
transportation

Clearing with item graphs
•  Tree decomposition of a graph G = a tree T with

–  Subsets of Gʼs vertices as Tʼs vertices; for every G-vertex,
set of T-vertices containing it must be a nonempty
connected set in T

–  Every neighboring pair of vertices in G occurs in some
single vertex of T

•  Width of T = (max #G-vertices in single T-vertex)-1
–  (For bounded w, can construct tree decomposition of width

w in polynomial time (if it exists))
•  Thrm. Given an item graph with tree decomposition T (width

w), can clear optimally in time O(|T|2 (|Bids|+1)w+1)
–  Sketch: for every partial assignment of a T-vertexʼs items

to bids, compute maximum possible value below that
vertex (using DP)

Solving the winner determination problem
when all combinations can be bid on: 

Search algorithms for optimal anytime
winner determination

•  Capitalize on sparsely populated space of bids
•  Generate only populated parts of space of allocations
•  Highly optimized
•  1st generation algorithm: branch-on-items formulation

[Sandholm ICE-98, IJCAI-99, AIJ-02; Fujishima, Leyton-Brown & Shoham
IJCAI-99]

•  2nd generation algorithm: branch-on-bids formulation
[Sandholm&Suri AAAI-00, AIJ-03, Sandholm et al. IJCAI-01, MgmtSci-05]

•  New ideas, e.g., multivariate branching [Gilpin & Sandholm
IJCAI-07, …]

First generation search algorithms: branch-on-items formulation  
[Sandholm ICE-98, IJCAI-99, AIJ-02]

Prop. Need only consider children that include item with smallest index among items not on the path
Insert dummy bid for price 0 for each single item that has no bids
 => allows bid combinations that do not cover all items (seller can keep some items)
Generates each allocation of positive value once, others not generated
Complexity

–  Prop. #leaves ≤ (#bids/#items)#items
–  Proof. Let ni be the number of bids that include item i but no items with smaller index.

#leaves ≤ max n1 ∙ n2 ∙ … ∙ nm s.t. n1 + n2 + …+ nm = #bids. Max achieved at ni = n/m. Depth at most
m. QED

–  #nodes ≤ #items #leaves
–  IDA* is 2 orders of magnitude faster than depth first search
–  Anytime algorithm

Bids:
1
2
3
4
5
1,2
1,3,5
1,4
2,5
3,5

5

1,2 1,3,5 1,4 1

3,5 3 2 2,5 2 22,5

4 4 4 3 3,5 3 3 3,5 3

5 5 4 4 4

2nd generation algorithm: Combinatorial Auction, Branch On Bids�
[Sandholm&Suri AAAI-00, AIJ-03]

•  Finds an optimal solution
•  Naïve analysis: 2#bids leaves

•  Thrm. At most leaves

–  where k is the minimum #items per bid
–  provably polynomial in bids even in worst case!

A

C B

C

D

A D
B
C

IN OUT

IN

IN

OUT

OUT

IN OUT

C

IN OUT

B
C

D

Bid graph

C
D

D

Bids of this example
A={1,2}
B={2,3}
C={3}
D={1,3}

Use of h-values (=upper bounds) to
prune winner determination search

•  f* = value of best solution found so far
•  g = sum of prices of bids that are IN on path
•  h = value of LP relaxation of remaining

problem
•  Upper bounding: Prune the path when g+h ≤ f*

Linear programming for
computing h-values

Linear program of the winner
determination problem

aka shadow price

Linear programming
Original problem

maximize

such that

Initial tableau

Slack variables

Assume, for simplicity, that origin is feasible (otherwise have to
run a different LP to find first feasible and run the main LP in a
revised space).
Simplex method “pivots” variables in and out of the tableau
Basic variables are on the left hand side

Graphical interpretation of simplex
algorithm for linear programming

c

Feasible region
Entering
variable x2

Departing
variable is
slack variable
of the constraint

Entering
variable x1

Departing
variable

Constraints

Each pivot results
in a new tableau

x2

x1

Interior point methods are another family of algorithms for linear programming

Speeding up the use of linear programs in search
•  If LP returns a solution where all integer variables have integer

values, then that is the solution to that node and no further
search is needed below that node

•  Instead of simplex in the LP, use simplex in the DUAL
because after branching, the previous DUAL solution is still
feasible and a good starting point for simplex at the new node
(see next slide)
–  Thrm. LP optimum value = DUAL optimum value

aka shadow price

Example showing DUAL is feasible at children
Goods: {1,2,3}, Bids: <{1,2},$4>, <{1,3},$3>, <{2,3},$2>

LP DUAL

LP LPDUAL DUAL

Infeasible (x2 > 0) Feasible
(for any y4)

Infeasible (x2 < 1) Feasible
(for y4 = 0)

The branch-and-cut approach

Cutting planes (aka cuts)
•  Extra linear constraints can be added to the LP to reduce

the LP polytope and thus give tighter bounds (less
optimistic h-values) if the constraints are guaranteed to not
exclude any integer solutions

•  Applications-specific vs. general-purpose cuts
•  Branch-and-cut algorithm = branch-and-bound algorithm

that uses cuts
–  A global cut is valid throughout the search tree
–  A local cut is guaranteed to be valid only in the subtree below the

node at which it was generated (and thus needs to be removed
from consideration when not in that subtree)

Example of a cut that is valid for
winner determination: �

Odd hole inequality
E.g., 5-hole

No chord

x1

x2
x3

x8

x6

Edge means that bids share items, so both bids cannot be accepted

x1 + x2 + x3 + x6 + x8 ≤ 2

Separation using cuts

LP optimum

Invalid cut

Valid cut that does not separate

Valid cut that separates

How to find cuts that separate?

•  For some cut families (and/or some
problems), there are polynomial-time
algorithms for finding a separating cut

•  Otherwise, use:
– Generate a cut

•  Generation preferably biased towards cuts that are
likely to separate

– Test whether it separates

Gomory mixed integer cut
•  Most powerful general-purpose cut for many problems
•  Applicable to all problems, where

–  constraints and objective are linear,
–  the problem has integer variables and potentially also real variables

•  Cut is generated using the LP optimum so that the cut
separates

Interesting tidbit (which we will not use here): Gomory’s cutting plane algorithm
Integer program can be solved with no search by an algorithm that generates a finite

(potentially exponential) number of these cuts.
Between the generation of cuts, the (dual) LP is solved.
The LP tableau guides which cut is generated next.
Rules against cycling in the LP solving are needed to guarantee optimality in a finite number of steps

(see, e.g., http://www.math.unl.edu/~shartke2/teaching/2008f432/Handout_Gomory.pdf).
While this algorithm has been viewed as a mere curiosity, it has very recently shown promise

on some practical problems (the anti-cycling rule is key).

Derivation of Gomory mixed integer cut
Input: one row from optimal tableau:

Define:

Rewrite tableau row:

LHS and RHS differ by an integer

Fractional, basic, not a slack, integer variable

Idea: RHS above has to be integral.
All integer terms add up to integers, so:

Non-basic. Integer. Continuous.

Back to search for winner
determination…

Formulation comparison

•  A branching decision
–  in the branch-on-bids formulation locks in only one bid

(and on the IN branch also its neighbors)
–  in the branch-on-items formulation locks in all bids that

include that item

•  The former follows the principle of least
commitment

•  More flexibility for further decision ordering (choice of which
decision to branch on in light of the newest information)

Structural improvements to search
algorithms for winner determination 

Optimum reached faster & better anytime performance

•  Always branch on a bid j that maximizes e.g. pj / |Sj|α (presort)
•  Lower bounding: If g+L>f*, then f*←g+L
•  Identify decomposition of bid graph in O(|E|+|V|) time & exploit

–  Pruning across subproblems (upper & lower bounding) by using f*
values of solved subproblems and h values of yet unsolved ones

•  Forcing decomposition by branching on an articulation bid

–  All articulation bids can be identified in O(|E|+|V|) time
–  Could try to identify combinations of bids that articulate (cutsets)

•  In depth-first branch-and-bound, it is sometimes best to branch on a question
for which the algorithm knows a good answer with high likelihood
–  Best (to date) heuristics for branching on bids [Sandholm et al. IJCAI-01, MgmtSci-05]:

•  A: Branch on bid whose LP value is closest to 1
•  B: Branch on bid with highest

normalized shadow surplus:

–  Choosing the heuristic dynamically based on remaining subproblem
•  E.g. use A when LP table density > 0.25 and B otherwise

•  In A* search, it is usually best to branch on a question whose right answer the
algorithm is very uncertain about
–  Traditionally in OR, variable whose LP value is most fractional
–  More general idea [Gilpin&Sandholm 03]: branch on a question that reduces the

entropy of the LP solution the most
•  Determine this e.g. based on lookahead
•  Applies to multivariate branching too

Question ordering heuristics

Branching on more general questions than
individual variables [Gilpin&Sandholm 03, IJCAI-07]

•  Branching question: “Of these k bids, are more than x winners?”
•  Never include bids whose LP values are integers
•  Never use a set of bids whose LP values sum to an integer
•  Prop. Only one sensible cutoff of x
•  Prop. The search space size is the same regardless of which bids

(and how many) are selected for branching
•  Usually yields smaller search trees than branching on individual

bids only

•  More generally in MIP, one branch one can branch on hyperplanes:
one branch is ∑iS α i x i ≤ c1 and the other branch is ∑i S α i x i >
c2 for some S

–  But how to decide on which hyperplane to branch?
–  For more on this approach, see, e.g.,

Improved Strategies for Branching on General Disjunctions by Gerard
Cornuejols, Leo Liberti and Giacomo Nannicini, July 2008

Other good branching rules �
(for integer programs)

•  Strong branching (= 1-step lookahead)
–  At a node, for each variable (from a set of promising candidate variable)

in turn, pretend that you branch on that variable and solve the node’s
childrens’ LPs

•  Sometimes child LPs are not solved to optimality (cap on # of dual pivots) to save time

–  Pick the variable to branch on that leads to tightest child LP bounds
•  Sometimes better and worse child are weighted differently

•  Reliability branching
–  Like strong branching, but once lookahead for a certain variable has been

conducted at a large enough number of nodes, stop doing lookahead for
that variable, and use average reduction in bound in past lookaheads for
that variable as that variable’s goodness measure

•  These could be used when branching on hyperplanes too

Identifying & solving tractable cases at
search nodes�

(so that no search is needed below such
nodes)

[Sandholm & Suri AAAI-00, AIJ-03]

Example 1: “Short” bids

•  Never branch on short bids with 1 or 2 items
– At each search node, we solve short bids from bid

graph separately
• O(#short bids 3) time using maximal weighted

matching
–  [Edmonds 65; Rothkopf et al 98]

• NP-complete even if only 3 items per bid
allowed

– Dynamically delete items included in only one bid

[Sandholm&Suri AAAI-00, AIJ-03]

•  At each search node, use a polynomial algorithm if remaining bid
graph only contains interval bids
–  Ordered list of items: 1..#items
–  Each bid is for some interval [q, r] of these items
–  [Rothkopf et al. 98] presented O(#items2) DP algorithm
–  [Sandholm&Suri AAAI-00, AIJ-03] DP algorithm is O(#items + #bids)

•  Bucket sort bids in ascending order of r
•  opt(i) is the optimal solution using items 1..i
•  opt(i) = max b in bids whose last item is i {pb + opt(qb-1), opt(i-1)}

•  Identifying linear ordering

–  Can be identified in O(|E|+|V|) time [Korte & Mohring SIAM-89]
•  Interval bids with wraparound can be identified in O(#bids2) time

[Spinrad SODA-93] and solved in O(#items (#items + #bids)) time using
our DP while DP of Rothkopf et al. is O(#items3)

Example 2: Interval bids

[Sandholm & Suri AAAI-00, AIJ-03]

Example 3:

Example 3...
•  Thrm. [Conitzer, Derryberry & Sandholm AAAI-04] An item tree

that matches the remaining bids (if one exists) can be
constructed in time O(|
Bids| |#items that any one bid contains|2 + |Items|2)

•  Algorithm:
–  Make a graph with the items as vertices
–  Each edge (i, j) gets weight #(bids with both i and j)
–  Construct maximum spanning tree of this graph: O(|Items|2) time
–  Thrm. The resulting tree will have the maximum possible weight

#(occurrences of items in bids) - |Bids| iff it is a valid item tree
•  Complexity of constructing an item graph of

treewidth 2 (or 3, or 4, …) is unknown (but complexity
of solving any such case given the item graph is
“polynomial-time” - exponential only in the treewidth)

Hardness of related questions
•  Constructing the item graph with the fewest

edges is NP-complete
–  Even when each bid is on at most 5 items, and an item

graph of treewidth at most 2 is known to exist;
regardless of whether we require the constructed tree
to have treewidth 2.

•  What if a bid can include a few (say, k) connected
sets rather than just one?
–  Clearing is NP-complete even when the graph is a line

and k = 2
–  Deciding whether a line graph exists with k = 5 is

NP-complete

Preprocessors [Sandholm IJCAI-99, AIJ-02]

•  Only keep highest bid for each combination that has received bids
•  Superset pruning

–  E.g. 〈{1,2,3,4}, $10〉 is pruned by 〈{1,3}, $7〉 and 〈{2,4}, $6〉
–  For each bid (prunee), use same search algorithm as main search, except

restrict to bids that are subsets of prunee
–  Terminate the search and prune the prunee if f* ≥ pruneeʼs price
–  Only consider bids with ≤ 30 items as potential prunees

•  Tuple pruning
–  E.g. 〈{1,2}, $8〉 and 〈{3,4}, $3〉 are not competitive together given 〈{1,3}, $7〉

and 〈{2,4}, $6〉
–  Construct virtual prunee from pair of bids with disjoint item sets
–  Use same pruning algorithm as superset pruning
–  If pruned, insert an edge into bid graph between the bids
–  O(#bids2 cap #items)
–  O(#bids3 cap #items) for pruning triples, etc.

•  More complex checking required in main search

Generalization: substitutability  
[Sandholm IJCAI-99, AIJ-02]

•  What if agent 1 bids
–  $7 for {1,2}
–  $4 for {1}
–  $5 for {2} ?

•  Bids joined with XOR
–  Allows bidders to express general preferences
–  Groves-Clarke pricing mechanism can be applied to make truthful

bidding a dominant strategy
–  Worst case: Need to bid on all 2#items-1 combinations

•  OR-of-XORs bids maintain full expressiveness & are more concise
–  E.g. (B2 XOR B3) OR (B1 XOR B3 XOR B4) OR ...
–  Our algorithm applies (simply more edges in bid graph => faster)

•  Preprocessors do not apply
•  Short bid technique & interval bid technique do not apply

